

UNIT –I INTRODUCTION SOFTWARE METRICS

1	a	What do you mean by software crisis? Identify the reasons for software crisis.	[L3][CO1]	[4M]
	b c	What is more important product or process? Justify your answer. What do you understand by term software development life cycle? Why	[L5][CO1] [L1][CO1]	[3M] [3M]
	ι	it is important to while developing a software product?		[314]
2	a	Compare iterative enhancement model and evolutionary process model.	[L2][CO1]	[4M]
	b	Discuss the prototyping model. What is the effect of designing a prototype on the overall cost of the software project?	[L5][CO1]	[6M]
3	a	Compare the waterfall model and the spiral model of software	[L2][CO1]	[4 M]
	_	development.		
	b	Describe the rapid application development (RAD) model. Discuss each phase in detail.		[6M]
4	a	List the process maturity levels in SEI's CMM. Explain each level.	[L2][CO1]	[6M]
	b	Define data structure metrics. How can we calculate amount of data in a	[L2][CO1]	[4 M]
5	a	program? Explain the spiral model of software development. What are the	[L2][CO1]	[5M]
		limitations of such model?	[][]	[]
	b	Explain the Halstead theory of software science. Is it significant in	[L5][CO1]	[5M]
6	a	today's scenario of software development? Explain in detail the following software metrics with example.	[L2][CO1]	[6M]
U	u	i) Size metric.	[22][001]	
		ii) Token Count.		
	b	Write a factorial program in C language. List out the operators and operands and also calculate the values of software science measures	[L5][CO1]	[4M]
		like η , N, V, E, and λ ?		
7		xplain in detail the following software metrics with example.	[L2][CO1]	[10M]
		i) Design Count metricsii) Data structure metrics		
8	a	An application has the following: 10 external inputs, 12 high external	[L6][CO1]	[6M]
		outputs, 20 low internal logical files, 15 high external interface files, 12		
		average external enquiries. And a value of complexity adjustment factor of 1.10. What are the unadjusted and adjusted function pint counts?		
	b	Is software metrics required in software engineering? Why do we really	[L1][CO1]	[4 M]
		need metrics in software.		
9	Ех	splain in detail the following software metrics with example.	[L2][CO1]	[10M]
		i) Function pointii) Information flow metrics		

Course Code: 19CI0603

[L6][CO1] [10M]

10 Consider a project with the following functional units: Number of user inputs = 50 Number of user outputs = 40 Number of user enquiries = 35 Number of user files = 06 Number of external interfaces = 04 Assume all complexity adjustment factors and weighting factors are average. Compute the function points for the project.

UNIT –II

SOFTWARE PROJECT PLANNING, SOFTWARE REQUIREMENT ANALYSIS AND SPECIFICATIONS

1	а	Explain the cost estimation models.	[L1][CO2]	[5M]
	b	A database system is developed. The effort has been estimated to be 100 persons- months. Calculate the number of line of code and productivity in LOC/ persons- month.	[L6][CO2]	[5M]
2	a	Compare the Walton-Felix model with the SEL model on a software development expected to involve 12 person-years of effort Software Project Planning.	[L6][CO2]	[5M]
		 (i) Calculate the number of lines of source code that can be produced. (ii) Calculate the duration of the development. (iii) Calculate the productivity in LOC/PY (iv) Calculate the average manning 		
	b	Identify typical software risk factors. Explain the risk management activities.	[L2][CO2]	[5M]
3	a b	What is COCOMO Model? Explain Basic COCOMO model in detail. Suppose that a project was estimated to be 400 KLOC. Calculate the effort, development time for each of the three modes (i.e., organic, semidetached and embedded and analyze.	[L2][CO2] [L6][CO2]	[5M] [5M]
4	a	Explain Intermediate COCOMO model in detail.	[L2][CO2]	[5M]
	b	A new project with estimated 500 KLOC embedded system has to be developed. Project manager has a choice of hiring from two pools of developers: very highly capable with very little experience in the programming language being used or developers of low quality but a lot of experience with the programming language. What is the impact of hiring all developers from one or the other pool?	[L5][CO2]	[5M]
5	a b		[L6][CO2] [L5][CO2]	[5M] [5M]
6	a	Explain the Putnam resource allocation model. What are the limitations of this model?	[L2][CO2]	[5M]
	b	A software development project is planned to cost 95 MY in a period of 1 year and 9 months. Calculate the peak manning and average rate of software team build up.	[L6][CO2]	[5M]
7	a	Differentiate functional and non-functional requirements.	[L2][CO2]	[5M]
	b	Describe the various steps of requirements engineering. Is it essential to follow these steps?	[L5][CO2]	[5M]
8	a	What are the components of an activity diagram? Explain their usage with the help of an example.	[L2][CO2]	[5M]
	b	Write short notes on Data dictionary.	[L6][CO2]	[5M]
9	a	What are the components of a use case diagram? Explain their usage with the help of an example.	[L2][CO2]	[5M]

Course Code: 19CI0603

	b	Model a Dataflow diagram for a "Library Management System". State and	[L6][CO2]	[5M]
		explain the functional requirements you are considering.		
10	а	List the characteristics of good SRS document and their requirements	[L2][CO2]	[5M]
	b	Illustrate E-R diagram with the diagram.	[L6][CO2]	[5M]

UNIT –III

SOFTWARE DESIGN, SOFTWARE RELIABILITY

1	a	Illustrate software design fram		[L2][CO3]	[5M]		
	b	-	ng. Explain relationship between cohesion and	[L1][CO3]	[5M]		
2	a	coupling. What is design? Describe the	difference between conceptual design and	[L2][CO3]	[5M]		
		technical design.	1 0				
	b		important properties of a modular system.	[L1][CO3]	[5M]		
3	a		ware design. How do we transform an informal	[L6][CO3]	[5M]		
		design to a detailed design?					
	b		assify different type of module cohesion.	[L4][CO3]	[5M]		
4	a	1 0	explain different types of coupling.	[L1][CO3]	[5M]		
	b	0	ion, what kind of coupling is this module likely	[L1][CO3]	[5M]		
		to have with others?					
5	a	Discuss object-oriented softw		[L6][CO3]	[5M]		
	b		es of design. Which design strategy is most	[L2][CO3]	[5M]		
_		popular and practical?	~ · · · ·				
6	a	Explain function-oriented sof		[L1][CO3]	[5M]		
	b		ween module cohesion and module coupling for	[L1][CO3]	[5M]		
7	ть	process of good software des		[10 M]			
/		e following parameters for ba	[L6][CO3]				
	Basic execution time modelLogarithmic poisson execution time model $\lambda_0=10$ failures/CPU hr. $\lambda_0=30$ failures/CPU hr.						
			*				
		T ₀ =100 failures	θ=0.025/faluire				
	i) Determine the additional failures and additional execution time required to						
	reach the failure objectives of 5failures/CPU hr for both models.						
	ii) Repeat this for an objective function of 0.5 failure/CPU hr. Assume that we						
~	sta	rt with the initial failure intens					
8		hat is software quality? Discus	1 1	[L1][CO3]	[10 M]		
9		plain the following software re	[L2][CO3]	[10 M]			
		i) Basic Execution Time Mod					
		ii) Calendar Time Component					
10			bject oriented designs and function oriented	[L6][CO3]	[10 M]		
	des	sign.					

UNIT –IV

SOFTWARE TESTING

1	a	What is software testing? What is the deference between verification and	[L1][CO4]	[4M]
		validation		
	b	Define the following terminologies:	[L1][CO4]	[6M]
		i) Error, Mistake, Bug, Fault and Failure.		
_		ii) Test, Test case and Test suite.		
2	W	hat is the difference between	[L2][CO4]	[10M]
		(i) Alpha testing & beta testing		
•	р.	(ii) Functional & structural testing		[10] []
3		scuss various types of functional testing techniques.	[L5][CO4]	[10M]
4	a	Consider a program for the determination of the nature of roots of a	[L6][CO4]	[5M]
		quadratic equation. Its input is a triple of positive integers (say a,b,c) and		
		values may be from interval [0,100]. The program output may have one of		
		the following words.		
		[Not a quadratic equation; Real roots; Imaginary roots; Equal roots] Design the boundary value test cases.		
	b	Explain the boundary value analysis testing techniques with the help of an	[I 2][CO4]	[5M]
	U	example.	[L2][C0+]	
5	а	Illustrate Equivalence class testing technique.	[L2][CO4]	[5M]
•	b	Consider a program for the determination of the nature of roots of a	[L2][CO4]	[5M]
	U	quadratic equation. Its input is a triple of positive integers (say a,b,c) and		
		values may be from interval [0,100]. The program output may have one of		
		the following words.		
		[Not a quadratic equation; Real roots; Imaginary roots; Equal roots]		
		Identify the equivalence class test cases for output and input domains.		
6	Ela	aborate various types of structural testing technique.	[L5][CO4]	[10M]
7	a	Explain decision table based testing technique.	[L2][CO4]	[5M]
	b	Simplify data flow testing technique with an example.	[L2][CO4]	[5M]
8	a	What is the purpose of integration testing? How is it done?	[L1][CO4]	[5M]
	b	Differentiate between integration testing and system testing.	[L4][CO4]	[5M]
9	a	What are the objectives of testing? Why is the psychology of a testing person	[L1][CO4]	[5M]
		important?	L JLJ	L 1
	b	Summarize an effect graphing testing technique.	[L2][CO4]	[5M]
10	a	Explain mutation testing technique.	[L2][CO4]	[5M]
	b	Compare various debugging technique.	[L2][CO4]	[5M]

R19

UNIT –V

SOFTWARE MAINTENANCE

1	a	Define the following teams: i) Software maintenance	[L1][CO5]	[3M]
		i) Reverse engineering		
		iii) Regression testing		
	b	Differentiate between re-engineering and new development.	[L2][CO5]	[4M]
	c	Identify the importance of software maintenance.	[L4][CO5]	[3 M]
2	Ex	plain the phases of software maintenance with help of a diagram.	[L5][CO5]	[10M]
3	W	hat is software maintenance? Describe various categories of maintenance. Which	[L2][CO5]	[10M]
		egory consumes maximum effort and why?		
4		scuss Reverse engineering and Re-engineering.	[L6][CO5]	[10M]
5	W1	hat is regression testing? Differentiate between regression and development testing.	[L2][CO5]	[10M]
6	Lis	st out system documentation and also explain their purpose.	[L1][CO5]	[10M]
7	a	Explain the following software maintenance.	[L2][CO5]	[5M]
		i) Quick fix model		
		ii) Iterative enhancement model		
	b	What are the appropriate reverse engineering tools? Discuss any two tools in detail.	[L1][CO5]	[5M]
8	a	What is reverse engineering? Discuss levels of reverse engineering.	[L6][CO5]	[5M]
	b	What are configuration management activities? Draw the Performa of change	[L6][CO5]	[5M]
		request form.		
9	Ide	entify various software maintenance models and explain in details.	[L2][CO5]	[10M]
10	a	Classify different categories of software documentation.	[L1][CO5]	[5M]
	b	Compare New software development and Re-engineering	[L4][CO5]	[5M]

Preparedby: B. Raja Kumar, Assist.Professor/CSIT